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Abstract
Theoretical and numerical studies are carried out for the nonlinear
amplitude modulation of ion-acoustic waves propagating in an unmagnetized,
collisionless, three-component plasma composed of inertial positive ions
moving in a background of two thermalized electron populations. Perturbations
oblique to the carrier wave propagation direction have been considered. The
stability analysis, based on a nonlinear Schrödinger-type equation, shows that
the wave may become unstable; the stability criteria depend on the angle
θ between the modulation and propagation directions. Different types of
localized excitations (envelope solitary waves) are shown to exist, in qualitative
agreement with satellite observations in the magnetosphere.

PACS numbers: 52.35.Fp, 52.35.Mw, 52.35.Sb

1. Introduction

Ion-acoustic waves (IAW) are well-known electrostatic plasma modes [1], where a population
of inertial ions oscillate against a dominant thermalized background of electrons providing the
necessary restoring force. The IAW phase velocity lies between the electron and ion thermal
velocities.

The linear properties of the IA wave have been extensively studied and well understood
since a long time ago. As far as nonlinear effects are concerned, the formation of IAW-related
localized structures, due to the mutual compensation between nonlinearity and dispersion,
when physically possible, has been anticipated theoretically, either via the Korteweg–
deVries (KdV) or Zakharov–Kuznetsov (ZK) equation [2, 3], describing small amplitude

1 On leave from: ULB—Université Libre de Bruxelles, Faculté des Sciences Apliquées, CP 165/81 Physique
Générale, Avenue F D Roosevelt 49, B-1050 Brussels, Belgium.
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solitary waves, or the Sagdeev potential formalism [4–7], accounting for arbitrary amplitude
excitations, and also experimentally confirmed [8].

The amplitude modulation of waves propagating in nonlinear dispersive media is a unique
nonlinear phenomenon that is relevant to many areas including physics and technology. For
large amplitude waves interacting with background media, nonlinear harmonic generation
due to carrier wave self-interaction comes into the picture. Self-modulation involving
second harmonic generation is responsible for modulational instabilities and possibly energy
localization via the formation of envelope excitations (solitons). This rather ubiquitous
mechanism has been studied in a wide variety of physical contexts, ranging from nonlinear
optics [9–14] and solid state physics [15] to hydrodynamics [16], plasma physics [17] and
even Bose–Einstein condensation [18, 19]; applications also include signal transmission lines
[16, 20], fibre telecommunications [21] and charge transport in molecular systems [22]. The
standard method consists in using a reductive perturbation (multiple spatio-temporal scales)
technique [23], which allows one to derive a nonlinear Schrödinger-type (NLS) equation [24]
for the modulated wave envelope from the relevant governing equations describing the physical
system considered. Regarding the propagation of electrostatic plasma waves, this formalism
has been applied in studies of ion-acoustic waves [23, 25–29], and theoretical predictions have
been experimentally confirmed [30]. The ion-acoustic mode, yet initially shown to be stable
to parallel modulation (for long wavelengths λ much larger than the Debye length λD) [25],
was later shown to be modulationally unstable for wavelengths above a wavenumber threshold
of kcr (≈1.47 2π/λD) [26]. The IAW instability region was shown to depend strongly on the
ion temperature [27] and obliqueness in modulation [28] and, eventually, the Landau damping
mechanism, which operates at small wavelength modes [29].

The characteristics of the IAW propagation can be strongly modified by the existence of a
minority population of ‘cold’ (yet still Maxwellian) electrons, as has been shown theoretically
[3, 5, 6, 31, 32] and experimentally [31, 33]. Regarding applications, it may be noted
that the injection of cold electrons into a plasma and the subsequent decrease of the phase
speed of waves has been suggested as a possible IAW stabilization mechanism, as well as an
ion heating enhancement method [31].

Interestingly, studies of two-electron-temperature plasmas are encouraged by satellite
observations of moving localized potential variation regions, reported by recent spacecraft
missions e.g. the FAST at the auroral region [34, 35], as well as the S3-3 [36], Viking [37],2

GEOTAIL and POLAR [35, 38] earlier missions in the magnetosphere, where such an electron
population coexistence is encountered. Some of the localized structures reported therein bear
qualitative characteristics which are reminiscent of solitary electrostatic waves and are strongly
believed to be related to ion-acoustic waves (see the discussion in [35]). It should be stressed
that both compressive and rarefactive large amplitude structures have been observed [34].
Furthermore, it has recently been suggested [35] that neither the velocity dependence of the
observed potential structure amplitudes nor their asymmetry should be taken for granted, since
they may be attributed to intrinsic measurement errors. Finally, the observed phase speeds
lie over an extended region of values, sometimes even above the ion sound speed; these facts
seem to suggest that plainly employing the KdV picture may not suffice for the elucidation
of the generation of these solitary structures and an alternative instability mechanism may be
present (also see the discussion in [32, 35]).

In this paper, we study the occurrence of modulational instability, as well as the existence
of envelope solitary structures, related to ion-acoustic waves propagating in a collisionless

2 The interpretation of the Viking measurements [37] has recently risen some doubt (see the thorough discussion in
[35]).
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unmagnetized plasma consisting of three distinct particle species ‘s’: an inertial species of
ions (denoted by ‘i’; mass mi, charge qi = +Zie), surrounded by an environment of two
populations of (thermalized) electrons (mass me, charge e), at different temperatures Th and
Tc (for ‘hot’ and ‘cold’, respectively). Charge neutrality is assumed at equilibrium.

2. The model equations

Let us consider the moment—Poisson system of equations for the ions. The (number) density
ni is governed by the (continuity) equation

∂ni

dt
+ ∇ · (niui) = 0 (1)

and the mean velocity ui obeys

∂ui

dt
+ ui · ∇ui = −Zie

mi
∇� (2)

where � is the electrostatic potential. The system is closed with Poisson’s equation

∇2� = −4π
∑

qsns = 4πe(nc + nh − Zini) (3)

where we assume a nearly Maxwellian distribution for the electrons i.e. nh/c ≈ nh/c0e
e�/kBTh/c

(Th/c is the hot/cold electron temperature, kB is the Boltzmann constant). The right-hand side
cancels at equilibrium due to the overall neutrality condition

nc,0 + nh,0 − Zini,0 = 0. (4)

By using this ‘cold ion’ model as a first step, we have neglected the ion temperature effect,
which we have left for a forthcoming study.

Choosing appropriate physical scales, one may normalize all quantities and develop
around equilibrium, i.e. � ≈ 0. First, let us define the effective electron temperature Teff =
(nh,0 + nc,0)/(nh,0/Th + nc,0/Tc) and the ‘effective sound speed’ cs,eff = (ZikBTeff/mi)

1/2,
in agreement with previous experimental [31] and theoretical [32] considerations. Note
that, interestingly, the effective electron temperature Teff remains finite, even if the hot
electron temperature Th tends to infinity (in the presence of even a small percentage
of cold electron population) as pointed out in [31]. Let us now scale time and space
over the ion plasma period ω−1

p,i = (
4πni,0Z

2
i e

2
/
me

)−1/2
and the effective Debye length

λD,eff = (kBTeff/4πZini,0e
2)1/2 ≡ cs,eff/ωp,i, respectively. Equations (1)–(4) can thus be

combined into the reduced equations

∂n

dt
+ ∇ · (nu) = 0

∂u
dt

+ u · ∇u = −∇φ

and

∇2φ = 1 + φ + αφ2 + α′φ3 − n (5)

where all quantities are non-dimensional: n = ni/ni,0, u = ui/v0 and φ = �/�0; the scaling
quantities are, respectively: the equilibrium ion density ni,0, the ‘effective sound speed’
v0 = cs,eff (defined above) and �0 = (kBTeff/e). The dimensionless parameters α, α′ in the
last equation are given by

α = 1

2
(nc,0 + nh,0)

nc,0

T 2
c

+ nh,0

T 2
h( nc,0

Tc
+ nh,0

Th

)2 = 1

2
(1 + ν)

ν + µ2

(ν + µ)2
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α′ = 1

6
(nc,0 + nh,0)

2

nc,0

T 3
c

+ nh,0

T 3
h( nc,0

Tc
+ nh,0

Th

)3 = 1

6
(1 + ν)2 ν + µ3

(ν + µ)3

where we defined the hot-to-cold electron density and temperature ratio, namely ν = nh,0/nc,0

and µ = Th/Tc, respectively. Note that, taking the isothermal limit ν → 0 (or ν → ∞
or µ → 1), one recovers exactly the ‘ordinary’ IAW (e–i plasma) values α′ = 2

3α2 = 1
6

[25, 26], while in the limit µ → ∞, one obtains: α′ = 2
3α2 = 1

6 (1 + ν)2. The parameters
ν and µ rather generally (yet not exclusively) bear values above unity; typical experimental
values e.g. in rf discharge experiments: µ = 14, µ = 12.6 [33] are of similar order of
magnitude as those reported in satellite observations: typically Th = 10 eV, Tc = 0.8 eV,
i.e. µ = 12.5 and ν = 10 [37] or even possibly higher [32]. Lower experimental values,
i.e. µ between 2 and 5 and ν varying from 1/6 to 3, have also been reported in discharge
plasmas [31].

3. Perturbative analysis

Let S be the state (column) vector (n, u, φ)T, describing the system’s state at a given position r
and instant t. Small deviations will be considered from the equilibrium state S(0) = (1, 0, 0)T

by taking S = S(0) + εS(1) + ε2S(2) + · · · = S(0) +
∑∞

n=1 εnS(n), where ε � 1 is a smallness
parameter. Following the standard multiple scale (reductive perturbation) technique [23], we
may consider a set of stretched (slow) space and time variables ζ = ε(x − λt) and τ = ε2t ,
where λ is to be later determined by compatibility requirements. All perturbed states depend
on the fast scales via the phase θ1 = k · r − ωt only, while the slow scales only enter the
lth harmonic amplitude S

(n)
l , namely S(n) = ∑∞

l=−∞ S
(n)
l (ζ, τ ) eil(k·r−ωt); the reality condition

S
(n)
−l = S

(n)
l

∗
is met by all state variables. Two directions are therefore of importance in this

(three dimensional) problem: the (arbitrary) propagation direction and the oblique modulation
direction, defining, say, the x-axis, characterized by an angle variable θ . The wavenumber
vector k is thus taken to be k = (kx, ky) = (k cos θ, k sin θ).

Substituting the above expressions into the system of equations (5) and isolating distinct
orders in ε, we obtain the nth-order reduced equations

−ilωn
(n)
l + ilk · u(n)

l − λ
∂n

(n−1)
l

∂ζ
+

∂n
(n−2)
l

∂τ
+

∂u
(n−1)
l,x

∂ζ

+
∞∑

n′=1

∞∑
l′=−∞

[
ilk · u(n−n′)

l−l′ n
(n′)
l′ +

∂

∂ζ

(
n

(n′)
l′ u

(n−n′−1)

(l−l′),x

)]
= 0 (6)

−ilωu(n)
l + ilkφ

(n)
l − λ

∂u(n−1)
l

∂ζ
+

∂u(n−2)
l

∂τ
+

∂φ
(n−1)
l

∂ζ
x̂

+
∞∑

n′=1

∞∑
l′=−∞

[
il′k · u(n−n′)

l−l′ u(n′)
l′ + u

(n−n′−1)

(l−l′),x
∂u(n′)

l′

∂ζ

]
(7)

and

n
(n)
l − (l2k2 + 1)φ

(n)
l + 2 ilkx

∂φ
(n−1)
l

∂ζ
+

∂2φ
(n−2)
l

∂ζ 2

−α

∞∑
n′=1

∞∑
l′=−∞

φ
(n−n′)
l−l′ φ

(n′)
l′ − α′

∞∑
n′,n′′=1

∞∑
l′,l′′=−∞

φ
(n−n′−n′′)
l−l′−l′′ φ

(n′)
l′ φ

(n′′)
l′′ = 0. (8)
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For convenience, in calculation one may consider, instead of the vectorial relation (7), the
scalar one obtained by taking its scalar product with the wavenumber k.

The standard perturbation procedure now consists in solving in successive orders ∼εn

and substituting in subsequent orders. For instance, the equations for n = 2, l = 1

−ilωn
(1)
l + ilk · u(1)

l = 0 (9)

−ilωu(1)
l + ilkφ

(1)
l = 0 (10)

and

n
(1)
l − (l2k2 + 1)φ

(1)
l = 0 (11)

provide the familiar IAW dispersion relation

ω2 = k2

k2 + 1
(12)

i.e. restoring dimensions

ω2 = ω2
p,i

k2

k2 + k2
D

≡ c2
s k

2

1 + k2λD
2
eff

(13)

and determine the first harmonics of the perturbation, namely

n
(1)
1 = (1 + k2)φ

(1)
1 k · u(1)

1 = ωn
(1)
1

(14)
u

(1)
1,x = ω

k
cos θn

(1)
1 u

(1)
1,y = ω

k
sin θn

(1)
1 .

Proceeding in the same manner, we obtain the second-order quantities, namely the amplitudes
of the second harmonics S

(2)
2 and constant (‘direct current’) terms S

(2)
0 , as well as a non-

vanishing contribution S
(2)
1 to the first harmonics. The lengthy expressions for these quantities,

omitted here for brevity, are conveniently expressed in terms of the first-order potential
correction φ

(1)
1 . The equations for n = 2, l = 1 then provide the compatibility condition:

λ = vg(k) = ∂ω
∂kx

= ω′(k) cos θ = ω3

k3 cos θ ; λ is therefore the group velocity in the x direction.

4. A nonlinear Schrödinger equation

Proceeding to the third order in ε (n = 3), the equations for l = 1 yield an explicit compatibility
condition in the form of the NLS equation

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ 2
+ Q|ψ |2ψ = 0. (15)

The ‘slow’ variables {ζ, τ } were defined above.
The dispersion coefficient P is related to the curvature of the dispersion curve as

P = 1
2

∂2ω
∂k2

x
= 1

2

[
ω′′(k) cos θ + ω′(k) sin2 θ

k

]
; the exact form of P reads

P(k) = 1

2ω

(ω

k

)4
[1 − (1 + 3ω2) cos2 θ ]. (16)

Note that expressions (12) and (16) above are identical to IAW quantities derived earlier, e.g.
expressions (3) and (4) in [28]. Therefore, no effect is observed on the linear wave dispersion
laws, due to the existence of the two electron populations (see that both parameters ν, τ are
absent in the preceding formulae). It seems appropriate to point out the effect of the oblique
modulation on the sign of P. The dispersion coefficient P is readily seen to be negative for
parallel modulation, i.e. taking θ = 0; however, for θ 
= 0 this is no longer the case, since
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P changes sign at some critical value of k. This fact has been pointed out (in the e–i plasma
case) in [28].

The nonlinearity coefficient Q is due to the carrier wave self-interaction. Distinguishing
different contributions, Q can be split into three distinct parts, namely Q = Q0 + Q1 + Q2,
where

Q0 = +
1

2ω

ω4

k4

1

1 − v2
g

{
k2

[
3 + 6k2 + 4k4 + k6 − 2α

(
2k2 + 3 − 2αv2

g

)
+ (2 + 4k2 + 3k4 + k6 − 2α) cos 2θ

]
+ 2(1 + k2)4ω2 cos2 θ

+ 2k3(1 + k2)
vg

ω
(1 + k2 − 2α) cos θ

}
(17)

Q1 = 3α′

2

ω3

k2
(18)

Q2 = − 1

12ω

ω4

k4
{2[−5α(1 + k2)2 + 2α2 + 3(1 + k2)3(1 + 3k2)]

+ (1 + k2)2(3 + 9k2 + 6k4 − 2α)}. (19)

We see that only the first contribution Q0, related to self-interaction due to the zeroth harmonics,
is angle dependent, while the latter two—respectively due to the cubic and quadratic terms in
(equation (5c))—are isotropic. For parallel modulation, i.e. θ = 0, the simplified expressions
for P |θ=0 and Q|θ=0 are readily obtained from the above formulae; note that P |θ=0 < 0,
while Q|θ=0, even though positive for k → 0 (see below), changes sign at some critical value
of k.

A preliminary result regarding the behaviour of the coefficients P and Q for long
wavelengths may be obtained by considering the limit of small k � 1 in the above
formulae. The parallel (θ = 0) and oblique (θ 
= 0) modulation cases have to be
distinguished straightaway. For small values of k (k � 1), P is negative and varies linearly as
P |θ=0 ≈ −3/2k in the parallel modulation case (i.e. θ = 0), tending to zero for vanishing k,
while for θ 
= 0, P is positive and goes to infinity as P |θ 
=0 ≈ sin2 θ/(2k) for vanishing k.
Therefore, the slightest deviation by θ of the amplitude variation direction with respect to
the wave propagation direction results in a change in sign of the group-velocity dispersion
coefficient P. On the other hand, Q varies as ∼ 1/k for small k � 1. For θ 
= 0,Q is
negative Q|θ 
=0 ≈ −(2α − 3)2/(12k) , while for vanishing θ , the approximate expression
for Q changes sign, i.e. Q|θ=0 ≈ +(2α − 3)2/(12k); see that the well-known Hasegawa [17]
result, i.e. Q ∼ 1/(3k), is recovered for α = 1/2 (and θ = 0). In conclusion, both P and Q
change sign when ‘switching on’ theta. Since the wave’s (linear) stability profile, expected to
be influenced by obliqueness in modulation, essentially relies on (the sign of) the product PQ

(see below), we see that long wavelengths will always be stable.

5. Linear stability analysis

The standard stability analysis consists in linearizing around the monochromatic wave solution
of the NLSE (15): ψ = ψ̂ eiQ|ψ̂ |2τ + c.c. (‘c.c.’ denotes the complex conjugate; note the
amplitude dependence of the frequency) by setting ψ̂ = ψ̂0 +εψ̂1, and taking the perturbation
ψ̂1 to be of the form: ψ̂1 = ψ̂1,0 ei(k̂ζ−ω̂τ ) + c.c. (distinguish the perturbation wavenumber k̂
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and frequency ω̂ from the carrier wave quantities, k and ω). Substituting into (15), one obtains
the dispersion relation

ω̂2 = P 2k̂2

(
k̂2 − 2

Q

P
|ψ̂0|2

)
. (20)

The wave will obviously be stable if the product PQ is negative. However, for positive

PQ > 0, instability sets in for wavenumbers below a critical value k̂cr =
√

2Q

P
|ψ̂0|, i.e. for

wavelengths above a wavelength threshold: λcr = 2π/k̂cr; defining the instability growth rate
σ = |Im ω̂(k̂)|, we see that it reaches its maximum value for k̂ = k̂cr/

√
2, namely

σmax = |Im ω̂|k̂=k̂cr/
√

2 = |Q||ψ̂0|2. (21)

We draw the conclusion that the instability condition depends only on the sign of the product
PQ, which may now be studied numerically, relying on the exact expressions derived
above.

In the contour plots presented below (see figures 1, 2), we have depicted the PQ = 0
boundary curve against the normalized wavenumber k/kD (in abscissa) and angle θ (between
0 and π ); the area in black/white represents the region in the (k–θ) plane where the product
is negative/positive, i.e. where the wave is stable/unstable. We have considered values of the
wavenumber k between zero and up to twice the Debye wavenumber kD (yet mostly focusing
our attention on the low k region). Angle θ is allowed to vary between zero and π (see that all
plots are π

2 periodic).
First, as analytically predicted above, the product PQ is negative for small k, for all values

of theta; long wavelengths will always be stable. For any given value of the modulation angle
θ , instability sets in above a wavenumber threshold, say, kcr, which is clearly seen to decrease
as the modulation angle θ increases from zero to approximately 30◦, and then increases again
up to θ ≈ 60◦. Nevertheless, beyond that value (and up to π/2) the wave remains stable;
this is even true for the wavenumber regions where the wave would be unstable to a parallel
modulation. The inverse effect is also present: even though certain k values correspond
to stability for θ = 0, the same modes may become unstable when subject to an oblique
modulation (θ 
= 0). In all cases, the wave appears to be globally stable to large angle θ

modulation (between 1 and π/2 radians, i.e. 60◦ to 90◦).
It is interesting to trace the influence of the percentage of the minority cold electron

population (related to ν = nh/nc) on the qualitative remarks of the preceding paragraph. For a
fixed value of the temperature ratio µ, we have numerically studied the sign of the PQ product
on the k–θ plane, gradually increasing the cold component concentration (i.e. ‘switching off’
ν). A rather complex behaviour is witnessed in figures 1(a)–(d), due to the competition
between the nonlinearity contributions Q1,2 (angle dependent) and Q0 (angle dependent). We
see that a small presence of hot electrons (ν > 1) may strongly modify the the wave’s stability
profile and even lead to instability in otherwise stable regions (cf figures 1(a)–(d)). Since the
black/white regions in the figures correspond to dark/bright-type solitons (see below), we
qualitatively deduce that a solitary wave of either type may become unstable while increasing
the cold minority electron presence. For values of ν below unity (nh < nc), there seems to be
no important effect on the wave’s stability, as described above (cf figures 1(e), (f )). Intuitively
speaking this is rather expected, since very low (ν → 0 i.e. nh � nc) and very high (ν → ∞
i.e. nh  nc) values of ν are identical in physical meaning: the ions are practically surrounded
by a single-electron population (either c or h) at some temperature Te (>Ti). Note, in passing,
that the well-known IAW previous result of kcr = 1.47 [25, 28] for the numerical solution of
PQ|θ=0 = 0 is exactly recovered here, for ν = 0 (or ν → ∞) (see figure 1(a)).

On the other hand, keeping the value of the density ratio ν fixed (ν = 10 in figure 2),
we may carry out a similar study by gradually ‘switching on’ µ, i.e. decreasing the cold
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Figure 1. The PQ = 0 contour is depicted against normalized wavenumber k/kD (in abscissa)
and angle θ (between 0 and π ); black/white represents the region where the product is
negative/positive, i.e. the region of linear stability/instability which may support dark/bright-
type solitary excitations. The electron temperature ratio Th/Tc is fixed at µ = 10; several values of
ν = nh/nc have been considered: (a) ν = 0 (single-electron temperature IAW)—this is identical
to ν → ∞; (b) ν = 25 (hot electron presence dominant); (c) ν = 20; (d ) ν = 4; (e) ν = 1;
(f) ν = 0.05 (cold electrons dominant).
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Figure 2. Similar to figure 1, for a (fixed) electron density ratio nh/nc of ν = 10; several values
of µ = Th/Tc have been considered: (a) µ = 2.5: only slightly different from the case µ = 1 (or
ν = 0; cf figure 1); (b) µ = 7.5; (c) µ = 10; (d) µ = 20; (e) µ = 50; (f) µ = 1000.

component temperature Tc. We see that low values of µ (see figures 2(a), (b)) are reminiscent
of the ordinary (e–i) IAW (cf figure 1(a)), while for higher µ values (i.e. for a ‘very cold’
minority of cold electrons) new regions of instability appear at wide angles. Given that the sign
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of PQ also affects the type of localized excitation supported by the plasma (see the following
section), this suggests that a strong temperature difference between hot and cold electrons
may destabilize dark excitations, in favour of bright envelope solitons. Nevertheless, a small
temperature difference generally favours dark excitations, i.e. density voids accompanied by
localized potential dips, in agreement with satellite observations [34].

6. Arbitrary amplitude nonlinear excitations

The NLSE (15) is known to possess distinct types of localized constant profile (solitary wave)
solutions, depending on the sign of the product PQ. Remember that equation (15) describes
the evolution of the wave’s envelope, so these solutions represent slowly varying localized
envelope structures, confining the (fast) carrier wave. Following [39], we may seek a solution
of equation (15) in the form ψ(ζ, τ ) = √

ρ(ζ, τ ) ei�(ζ,τ ), where ρ, σ are real variables which
are determined by substituting into the NLSE and separating real and imaginary parts. The
different types of solution thus obtained are summarized in the following.

For PQ > 0 we find the (bright) envelope soliton3

ρ = ρ0 sech2

(
ζ − uτ

L

)
� = 1

2P

[
uζ −

(
� +

1

2
u2

)
τ

]
(22)

representing a localized pulse travelling at a speed u and oscillating at a frequency � (at rest).

The pulse width L depends on the (constant) maximum amplitude square ρ0 as L =
√

2P
Qρ0

.

For PQ < 0 we have the dark envelope soliton (hole) [39]

ρ = ρ1

[
1 − sech2

(
ζ − uτ

L′

)]
= ρ1 tanh2

(
ζ − uτ

L′

)
(23)

� = 1

2P

[
uζ −

(
1

2
u2 − 2PQρ1

)
τ

]
representing a localized region of negative wave density (shock) travelling at a speed u. Again,

the pulse width depends on the maximum amplitude square ρ1 via L′ =
√

2
∣∣ P
Qρ1

∣∣.
Finally, looking for velocity-dependent amplitude solutions, for PQ < 0, one obtains the

grey envelope solitary wave [39]

ρ = ρ2

[
1 − a2 sech2

(
ζ − uτ

L′′

)]
(24)

� = 1

2P

[
V0ζ −

(
1

2
V 2

0 − 2PQρ2

)
τ + �10

]
− S sin−1 a tanh

(
ζ−uτ

L′′
)

[
1 − a2 sech2

(
ζ−uτ

L′′
)]1/2

which also represents a localized region of negative wave density; �10 is a constant phase; S
denotes the product S = signP × sign(u − V0). In comparison to the dark soliton (23), note
that apart from the maximum amplitude ρ2, which is now finite (i.e. non-zero) everywhere,

the pulse width of this grey-type excitation: L′′ =
√

2
∣∣ P
Qρ2

∣∣ 1
a

, now also depends on a, given

by: a2 = 1 + 1
2PQ

1
ρ2

(
u2 − V 2

0

)
� 1 (forPQ < 0), an independent parameter representing

the modulation depth (0 < a � 1). V0 is an independent real constant which satisfies the
condition [39]: V0 −√

2|PQ|ρ2 � u � V0 +
√

2|PQ|ρ2; for V0 = u, we have a = 1 and thus
recover the dark soliton presented in the previous paragraph.

3 This result is immediately obtained from [39], by transforming the variables therein into our notation as follows:
x → ζ, s → τ, ρm → ρ0, α → 2P, q0 → −2PQ, � → L, E → �,V0 → u.
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Figure 3. A few (normalized) soliton (square) width P/Q fixed value contours are depicted
against (normalized) wavenumber k/kD and modulation angle θ , for different electron density
and temperature ratio (i.e. ν = nh/nc and µ = Th/Tc, respectively) pair values: (a) ν = 0
(single-electron e–i plasma limit, for reference); (b) ν = 10, µ = 10; (c) ν = 30, µ = 10;
(d) ν = 10, µ = 30. In descending order (from top to bottom), the contour values are:
−0.25,−0.1,−0.01, 0, 0.01, 0.1 and 0.25.

We note that the envelope soliton width L will depend on the dispersion law via the P and
Q coefficients, namely L2 ∼ P/Q (see above); for instance, regions with higher values of P
(or lower values of Q) will support wider (spatially more extended) localized excitations. The
soliton width does not depend on the pulse velocity. It does, however, depend on parameters
µ and ν, as suggested in figure 3. Upon careful inspection of figures 3(b), (d ), we note that
increasing the value of the temperature ratio µ (for a given value of ν) (cf figures 3(b), (d ))
may result in narrower solitons for short wavelengths or even different soliton types for longer
wavelengths. The inverse effect, yet less dramatic, is encountered when varying the value of
the density ratio ν (for a given µ)—cf figures 3(b), (c): injecting cold electrons i.e. decreasing
ν results in narrower solitary waves (pulses). We draw the qualitative conclusion that local
variations of the cold component concentration may result in (either dark or bright) envelope
wave (de)stabilization.

Summarizing, we have seen that the regions depicted in figures 1 and 2 actually also
distinguish the regions where different types of localized solutions may exist: bright (dark or
grey) solitons will occur in white (black) regions (the different types of NLS excitations are
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exhaustively reviewed in [39]). Since, intuitively speaking, different directions of amplitude
perturbation may coexist, for any given wavenumber, none of the above soliton types is a
priori excluded at some given wave situation (nevertheless, long wavelengths mostly favour
dark excitations (cf figures 1, 2)). Since a simultaneous propagation of nonlinear excitations
(moving at different velocities and not interacting with each other) is in principle possible,
the conjecture can be made that a local envelope soliton superposition may account for the
apparent asymmetries observed in the potential and density variation structures reported by
satellite observations. In particular, these results are in qualitative agreement with conclusions
in [6], where it was argued that both compressive and rarefactive solitary structures may
coexist, provided that the temperature difference is high enough.

7. Conclusions

This work has been devoted to the study of the modulation of ion-acoustic waves propagating
in an unmagnetized plasma in the presence of two distinct thermalized electron populations.
Allowing for modulation to occur in an oblique manner, we have shown that the conditions
for modulational instability depend on the angle between the propagation and modulation
directions. In fact, the region of parameter values where instability occurs is rather extended
for angle θ values up to a certain threshold, and, in contrast, smeared out for higher θ values
(and up to 90◦, then going on in a π

2 -periodic fashion).
Furthermore, we have studied the possibility of the formation of IAW-related localized

structures (solitary waves) in the plasma. Distinct types of localized excitations (envelope
solitons) have been shown to exist. Their type and propagation characteristics depend on
the carrier wavenumber k and the modulation angle θ . These envelope excitations reproduce
the qualitative features of localized structures (potential and density variations) observed by
spacecraft and their study may provide a hint towards the explanation of the creation and
persistence of the latter.
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